Projekt per år
Sammanfattning
Speaker localization using microphone arrays depends on accurate time delay estimation techniques. For decades, methods based on the generalized cross correlation with phase transform (GCC-PHAT) have been widely adopted for this purpose. Recently, the GCC-PHAT has also been used to provide input features to neural networks in order to remove the effects of noise and reverberation, but at the cost of losing theoretical guarantees in noise-free conditions. We propose a novel approach to extending the GCC-PHAT, where the received signals are filtered using a shift equivariant neural network that preserves the timing information contained in the signals. By extensive experiments we show that our model consistently reduces the error of the GCC-PHAT in adverse environments, with guarantees of exact time delay recovery in ideal conditions.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the Annual Conference of the International Speech Communication Association 2022 |
Förlag | ISCA |
Sidor | 1791-1795 |
Antal sidor | 5 |
DOI | |
Status | Published - 2022 |
Evenemang | Interspeech 2022 - Incheon, Sydkorea, Republiken Korea Varaktighet: 2022 sep. 18 → 2022 sep. 22 |
Publikationsserier
Namn | Interspeech |
---|---|
Förlag | ISCA |
Konferens
Konferens | Interspeech 2022 |
---|---|
Land/Territorium | Sydkorea, Republiken Korea |
Ort | Incheon |
Period | 2022/09/18 → 2022/09/22 |
Ämnesklassifikation (UKÄ)
- Signalbehandling
Fingeravtryck
Utforska forskningsämnen för ”Extending GCC-PHAT using Shift Equivariant Neural Networks”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 1 Aktiva
-
Deep Learning for Simultaneous Localization and Mapping
Berg, A., Oskarsson, M., Åström, K. & O'Connor, M.
2019/02/01 → 2024/02/01
Projekt: Avhandling