Fast Algorithms for Iterative Adaptive Approach Spectral Estimation Techniques

George-Othan Glentis, Andreas Jakobsson

Forskningsoutput: KonferensbidragKonferenspaper, ej i proceeding/ej förlagsutgivetPeer review

Sammanfattning

This paper presents computationally efficient implementations for Iterative Adaptive Approach (IAA) spectral estimation techniques for uniformly sampled data sets. By exploiting the methods inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity with at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain.
Originalspråkengelska
StatusPublished - 2011
Evenemang36th International Conference on Acoustics, Speech and Signal Processing - Prague
Varaktighet: 2011 maj 222011 maj 27

Konferens

Konferens36th International Conference on Acoustics, Speech and Signal Processing
Period2011/05/222011/05/27

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Fast Algorithms for Iterative Adaptive Approach Spectral Estimation Techniques”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här