Fixing Sample Biases in Experimental Data Using Agent-Based Modelling

Mike Farjam, Giangiacomo Bravo

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We present how agent-based models can be used to correct for biases in a sample. The approach is generally useful for behavioural experiments where participants interact over time. The model we developed copied mechanics of a behavioural experiment conducted earlier, and agents in the model faced the same strategic choices as human participants did. We used the data from the experiment to calibrate agent behaviour such that agents reproduced patterns observed in the experiment. After this learning phase, we resampled agents such that their characteristics (political orientation) were similar to those found in the real world. We found that after the correction for the bias, agents produced patterns closer to those commonly found.

Originalspråkengelska
Titel på värdpublikationAdvances in Social Simulation - Looking in the Mirror, 2018
RedaktörerNanda Wijermans, Giangiacomo Bravo, Melania Borit, Harko Verhagen
UtgivningsortCham
FörlagSpringer Nature
Kapitel14
Sidor155-159
Antal sidor5
ISBN (elektroniskt)978-3-030-34127-5
ISBN (tryckt)9783030341268
DOI
StatusPublished - 2020
Externt publiceradJa
Evenemang14th Social Simulation Conference, 2018 - Stockholm, Sverige
Varaktighet: 2018 aug. 202018 aug. 24

Publikationsserier

NamnSpringer Proceedings in Complexity
ISSN (tryckt)2213-8684
ISSN (elektroniskt)2213-8692

Konferens

Konferens14th Social Simulation Conference, 2018
Land/TerritoriumSverige
OrtStockholm
Period2018/08/202018/08/24

Ämnesklassifikation (UKÄ)

  • Tvärvetenskapliga studier

Fingeravtryck

Utforska forskningsämnen för ”Fixing Sample Biases in Experimental Data Using Agent-Based Modelling”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här