Flow Counting Using Realboosted Multi-sized Window Detectors

Håkan Ardö, Mikael Nilsson, Rikard Berthilsson

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

One classic approach to real-time object detection is to use adaboost to a train a set of look up tables of discrete features. By utilizing a discrete feature set, from features such as local binary patterns, efficient classifiers can be designed. However, these classifiers include interpolation operations while scaling the images over various scales. In this work, we propose the use of real valued weak classifiers which are designed on different scales in order to avoid costly interpolations. The use of real valued weak classifiers in combination with the proposed method avoiding interpolation leads to substantially faster detectors compared to baseline detectors. Furthermore, we investigate the speed and detection performance of such classifiers and their impact on tracking performance. Results indicate that the realboost framework combined with the proposed scaling framework achieves an 80% speed up over adaboost with bilinear interpolation.
Originalspråkengelska
Titel på värdpublikationComputer Vision – ECCV 2012. Workshops and Demonstrations
Undertitel på värdpublikationFlorence, Italy, October 7-13, 2012, Proceedings, Part III
FörlagSpringer
Sidor193-202
ISBN (elektroniskt)978-3-642-33885-4
ISBN (tryckt)978-3-642-33884-7
DOI
StatusPublished - 2012
Evenemang3rd IEEE International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams (ARTEMIS 2012) - Florence, Italien
Varaktighet: 2012 okt. 132012 okt. 13

Publikationsserier

NamnLecture notes in computer science
FörlagSpringer
Volym7585
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Konferens

Konferens3rd IEEE International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams (ARTEMIS 2012)
Land/TerritoriumItalien
OrtFlorence
Period2012/10/132012/10/13

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Flow Counting Using Realboosted Multi-sized Window Detectors”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här