Forecasting ARMA models: a comparative study of information criteria focusing on MDIC

Panagiotis Mantalos, K. Mattheou, A. Karagrigoriou

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

This paper deals with the implementation of model selection criteria to data generated by ARMA processes. The recently introduced modified divergence information criterion is used and compared with traditional selection criteria like the Akaike information criterion (AIC) and the Schwarz information criterion (SIC). The appropriateness of the selected model is tested for one- and five-step ahead predictions with the use of the normalized mean squared forecast errors (NMSFE).
Originalspråkengelska
Sidor (från-till)61-73
TidskriftJournal of Statistical Computation and Simulation
Volym80
Nummer1-2
DOI
StatusPublished - 2010

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Forecasting ARMA models: a comparative study of information criteria focusing on MDIC”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här