TY - JOUR
T1 - Frequency Dependence and Ecological Drift Shape Coexistence of Species with Similar Niches
AU - Svensson, Erik I.
AU - Gómez-Llano, Miguel A.
AU - Torres, Anais Rivas
AU - Bensch, Hanna M.
PY - 2018
Y1 - 2018
N2 - The coexistence of ecologically similar species might be counteracted by ecological drift and demographic stochasticity, both of which erode local diversity. With niche differentiation, species can be maintained through performance trade-offs between environments, but trade-offs are difficult to invoke for species with similar ecological niches. Such similar species might then go locally extinct due to stochastic ecological drift, but there is little empirical evidence for such processes. Previous studies have relied on biogeographical surveys and inferred process from pattern, while experimental field investigations of ecological drift are rare. Mechanisms preserving local species diversity, such as frequency dependence (e.g., rare-species advantages), can oppose local ecological drift, but the combined effects of ecological drift and such counteracting forces have seldom been investigated. Here, we investigate mechanisms between coexistence of ecologically similar but strongly sexually differentiated damselfly species (Calopteryx virgo and Calopteryx splendens). Combining field surveys, behavioral observations, experimental manipulations of species frequencies and densities, and simulation modeling, we demonstrate that species coexistence is shaped by the opposing forces of ecological drift and negative frequency dependence (rare-species advantage), generated by interference competition. Stochastic and deterministic processes therefore jointly shape coexistence. The role of negative frequency dependence in delaying the loss of ecologically similar species, such as those formed by sexual selection, should therefore be considered in community assembly, macroecology, macroevolution, and biogeography.
AB - The coexistence of ecologically similar species might be counteracted by ecological drift and demographic stochasticity, both of which erode local diversity. With niche differentiation, species can be maintained through performance trade-offs between environments, but trade-offs are difficult to invoke for species with similar ecological niches. Such similar species might then go locally extinct due to stochastic ecological drift, but there is little empirical evidence for such processes. Previous studies have relied on biogeographical surveys and inferred process from pattern, while experimental field investigations of ecological drift are rare. Mechanisms preserving local species diversity, such as frequency dependence (e.g., rare-species advantages), can oppose local ecological drift, but the combined effects of ecological drift and such counteracting forces have seldom been investigated. Here, we investigate mechanisms between coexistence of ecologically similar but strongly sexually differentiated damselfly species (Calopteryx virgo and Calopteryx splendens). Combining field surveys, behavioral observations, experimental manipulations of species frequencies and densities, and simulation modeling, we demonstrate that species coexistence is shaped by the opposing forces of ecological drift and negative frequency dependence (rare-species advantage), generated by interference competition. Stochastic and deterministic processes therefore jointly shape coexistence. The role of negative frequency dependence in delaying the loss of ecologically similar species, such as those formed by sexual selection, should therefore be considered in community assembly, macroecology, macroevolution, and biogeography.
KW - ecological drift
KW - frequency dependence
KW - neutral theory
KW - sexual selection
KW - speciation
KW - unified neutral theory of biodiversity
U2 - 10.1086/697201
DO - 10.1086/697201
M3 - Article
C2 - 29750557
AN - SCOPUS:85044123600
SN - 0003-0147
VL - 191
SP - 691
EP - 703
JO - American Naturalist
JF - American Naturalist
IS - 6
ER -