Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters

Davide Aguglia, Philippe Viarouge, Carlos Martins

    Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

    6 Citeringar (SciVal)

    Sammanfattning

    This paper presents an offline frequency-domain nonlinear and stochastic identification method for equivalent model parameter estimation of high-voltage pulse transformers. Such kinds of transformers are widely used in the pulsed-power domain, and the difficulty in deriving pulsed-power converter optimal control strategies is directly linked to the accuracy of the equivalent circuit parameters. These components require models which take into account electric fields energies represented by stray capacitance in the equivalent circuit. These capacitive elements must be accurately identified, since they greatly influence the general converter performances. A nonlinear frequency-based identification method, based on maximum-likelihood estimation, is presented, and a sensitivity analysis of the best experimental test to be considered is carried out. The procedure takes into account magnetic saturation and skin effects occurring in the windings during the frequency tests. The presented method is validated by experimental identification of a 2-MW-100-kV pulse transformer.
    Originalspråkengelska
    Sidor (från-till)2552-2561
    TidskriftIEEE Transactions on Industry Applications
    Volym49
    Utgåva6
    DOI
    StatusPublished - 2013

    Ämnesklassifikation (UKÄ)

    • Naturvetenskap
    • Fysik

    Fingeravtryck

    Utforska forskningsämnen för ”Frequency-Domain Maximum-Likelihood Estimation of High-Voltage Pulse Transformer Model Parameters”. Tillsammans bildar de ett unikt fingeravtryck.

    Citera det här