From small space to small width in resolution

Yuval Filmus, Massimo Lauria, Mladen Mikša, Jakob Nordström, Marc Vinyals

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system by establishing that the space complexity of formulas is always an upper bound on the width needed to refute them. Their proof is beautiful but somewhat mysterious in that it relies heavily on tools from finite model theory. We give an alternative, completely elementary, proof that works by simple syntactic manipulations of resolution refutations. As a by-product, we develop a "black-box" technique for proving space lower bounds via a "static" complexity measure that works against any resolution refutation-previous techniques have been inherently adaptive. We conclude by showing that the related question for polynomial calculus (i.e., whether space is an upper bound on degree) seems unlikely to be resolvable by similar methods.

Originalspråkengelska
Titel på värdpublikation31st International Symposium on Theoretical Aspects of Computer Science, STACS 2014
RedaktörerNatacha Portier, Ernst W. Mayr
FörlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Sidor300-311
Antal sidor12
Volym25
ISBN (elektroniskt)9783939897651
DOI
StatusPublished - 2014 mars 1
Externt publiceradJa
Evenemang31st International Symposium on Theoretical Aspects of Computer Science, STACS 2014 - Lyon, Frankrike
Varaktighet: 2014 mars 52014 mars 8

Publikationsserier

NamnLeibniz International Proceedings in Informatics, LIPIcs
FörlagSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Volym25
ISSN (tryckt)1868-8969

Konferens

Konferens31st International Symposium on Theoretical Aspects of Computer Science, STACS 2014
Land/TerritoriumFrankrike
OrtLyon
Period2014/03/052014/03/08

Ämnesklassifikation (UKÄ)

  • Algebra och logik
  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”From small space to small width in resolution”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här