Gait-based recognition of humans using continuous HMMs

A. Kale, A. N. Rajagopalan, N. Cuntoor, V. Krüger

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Gait is a spatiooral phenomenon that typifies the motion characteristics of an individual. In this paper, we propose a view-based approach to recognize humans through gait. The width of the outer contour of the binarized silhouette of a walking person is chosen as the image feature. A set of stances or key frames that occur during the walk cycle of an individual is chosen. Euclidean distances of a given image from this stance set are computed and a lower-dimensional observation vector is generated. A continuous hidden Markov model (HMM) is trained using several such lower-dimensional vector sequences extracted from the video. This methodology serves to compactly capture structural and transitional features that are unique to an individual. The statistical nature of the HMM renders overall robustness to gait representation and recognition. The human identification performance of the proposed scheme is found to be quite good when tested in natural walking conditions.

Originalspråkengelska
Titel på värdpublikationProceedings - 5th IEEE International Conference on Automatic Face Gesture Recognition, FGR 2002
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor336-341
Antal sidor6
ISBN (tryckt)0769516025, 9780769516028
DOI
StatusPublished - 2002 jan. 1
Externt publiceradJa
Evenemang5th IEEE International Conference on Automatic Face Gesture Recognition, FGR 2002 - Washington, DC, USA
Varaktighet: 2002 maj 202002 maj 21

Konferens

Konferens5th IEEE International Conference on Automatic Face Gesture Recognition, FGR 2002
Land/TerritoriumUSA
OrtWashington, DC
Period2002/05/202002/05/21

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Gait-based recognition of humans using continuous HMMs”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här