Generalized LDPC Codes with Convolutional Code Constraints

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Braided convolutional codes (BCCs) are a class of spatially coupled turbo-like codes that can be described by a (2), (3)-regular compact graph. In this paper, we introduce a family of (d v , d c )-regular GLDPC codes with convolutional code constraints (CC-GLDPC codes), which form an extension of classical BCCs to arbitrary regular graphs. In order to characterize the performance in the waterfall and error floor regions, we perform an analysis of the density evolution thresholds as well as the finite-length ensemble weight enumerators and minimum distances of the ensembles. In particular, we consider various ensembles of overall rate R = 1/3 and R = 1/2 and study the trade-off between variable node degree and strength of the component codes. We also compare the results to corresponding classical LDPC codes with equal degrees and rates. It is observed that for the considered LDPC codes with variable node degree d v > 2, we can find a CC-GLDPC code with smaller d v that offers similar or better performance in terms of BP and MAP thresholds at the expense of a negligible loss in the minimum distance.
Originalspråkengelska
Titel på värdpublikation2020 IEEE International Symposium on Information Theory (ISIT)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor479-484
Antal sidor6
ISBN (elektroniskt)978-1-7281-6432-8
ISBN (tryckt)978-1-7281-6433-5
DOI
StatusPublished - 2020 aug. 24
Evenemang2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, CA, USA
Varaktighet: 2020 juni 212020 juni 26

Konferens

Konferens2020 IEEE International Symposium on Information Theory, ISIT 2020
Förkortad titelISIT 2020
Land/TerritoriumUSA
OrtLos Angeles, CA
Period2020/06/212020/06/26

Ämnesklassifikation (UKÄ)

  • Annan elektroteknik och elektronik

Fingeravtryck

Utforska forskningsämnen för ”Generalized LDPC Codes with Convolutional Code Constraints”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här