Geodesic flow on the diffeomorphism group of the circle

Adrian Constantin, B Kolev

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

312 Citeringar (SciVal)

Sammanfattning

We show that certain right-invariant metrics endow the infinite-dimensional Lie group of all smooth orientation-preserving diffeomorphisms of the circle with a Riemannian structure. The study of the Riemannian exponential map allows us to prove infinite-dimensional counterparts of results from classical Riemannian geometry: the Riemannian exponential map is a smooth local diffeomorphism and the length-minimizing property of the geodesics holds.
Originalspråkengelska
Sidor (från-till)787-804
TidskriftCommentar II Mathematici Helvetici
Volym78
Utgåva4
DOI
StatusPublished - 2003

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Geodesic flow on the diffeomorphism group of the circle”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här