TY - JOUR
T1 - Geographic variation in floral traits is associated with environmental and genetic differences among populations of the mixed mating species Collinsia heterophylla (Plantaginaceae)
AU - Lankinen, Åsa
AU - Madjidian, Josefin A.
AU - Andersson, Stefan
PY - 2017
Y1 - 2017
N2 - Relatively few studies have investigated how geography, environmental factors, and genetics affect floral trait variation. We used mixed-mating Collinsia heterophylla Buist to explore variation in a suite of floral traits related to mating system in populations representing four geographic regions of California, USA, and relate this variation to geography, climatic factors, and local site characteristics. We evaluated the environmental vs. genetic trait variability in the greenhouse. Stage of anther–stigma contact correlated positively with temperature, stage of stigma receptivity was negatively associated with vegetation cover, and flower size differed among populations without any clear relation to environmental factors. Greenhouse data indicated heritability for stage of anther– stigma contact, flower size, and time to flowering, and positive correlations between field and greenhouse for stage of stigma receptivity and flower size; however, stage of anther–stigma contact showed a high degree of environmental influence. Stage of anther–stigma contact covaried positively with stage of stigma receptivity and flower size across maternal families, indicating genetic correlations between traits. In conclusion, phenotypic floral variation within mixed-mating C. heterophylla is mostly determined by a genetic component. Geography, environment, and genetics affect traits differently, suggesting that ecological and evolutionary processes contribute to shaping variability in mating system-related traits.
AB - Relatively few studies have investigated how geography, environmental factors, and genetics affect floral trait variation. We used mixed-mating Collinsia heterophylla Buist to explore variation in a suite of floral traits related to mating system in populations representing four geographic regions of California, USA, and relate this variation to geography, climatic factors, and local site characteristics. We evaluated the environmental vs. genetic trait variability in the greenhouse. Stage of anther–stigma contact correlated positively with temperature, stage of stigma receptivity was negatively associated with vegetation cover, and flower size differed among populations without any clear relation to environmental factors. Greenhouse data indicated heritability for stage of anther– stigma contact, flower size, and time to flowering, and positive correlations between field and greenhouse for stage of stigma receptivity and flower size; however, stage of anther–stigma contact showed a high degree of environmental influence. Stage of anther–stigma contact covaried positively with stage of stigma receptivity and flower size across maternal families, indicating genetic correlations between traits. In conclusion, phenotypic floral variation within mixed-mating C. heterophylla is mostly determined by a genetic component. Geography, environment, and genetics affect traits differently, suggesting that ecological and evolutionary processes contribute to shaping variability in mating system-related traits.
KW - Climate
KW - Genetic correlation
KW - Heritability
KW - Mating system evolution
KW - Phenotypic plasticity
UR - http://www.scopus.com/inward/record.url?scp=85012104654&partnerID=8YFLogxK
U2 - 10.1139/cjb-2016-0014
DO - 10.1139/cjb-2016-0014
M3 - Article
AN - SCOPUS:85012104654
SN - 1916-2804
VL - 95
SP - 121
EP - 128
JO - Botany
JF - Botany
IS - 2
ER -