Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure

Alain Hecq, Luca Margaritella, Stephan Smeekes

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We develop an LM test for Granger causality in high-dimensional (HD) vector autoregressive (VAR) models based on penalized least squares estimations. To obtain a test retaining the appropriate size after the variable selection done by the lasso, we propose a post-double-selection procedure to partial out effects of nuisance variables and establish its uniform asymptotic validity. We conduct an extensive set of Monte-Carlo simulations that show our tests perform well under different data generating processes, even without sparsity. We apply our testing procedure to find networks of volatility spillovers and we find evidence that causal relationships become clearer in HD compared to standard low-dimensional VARs.
Originalspråkengelska
Sidor (från-till)915-958
Antal sidor44
TidskriftJournal of Financial Econometrics
Volym21
Nummer3
DOI
StatusPublished - 2023

Ämnesklassifikation (UKÄ)

  • Nationalekonomi

Fingeravtryck

Utforska forskningsämnen för ”Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här