Graph Colouring Is Hard on Average for Polynomial Calculus and Nullstellensatz

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We prove that polynomial calculus (and hence also Nullstellensatz) over any field requires linear degree to refute that sparse random regular graphs, as well as sparse Erdős-Rényi random graphs, are 3-colourable.

Originalspråkengelska
Titel på värdpublikationProceedings - 2023 IEEE 64th Annual Symposium on Foundations of Computer Science, FOCS 2023
FörlagIEEE Computer Society
Sidor1-11
Antal sidor11
ISBN (elektroniskt)9798350318944
DOI
StatusPublished - 2023
Evenemang64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023 - Santa Cruz, USA
Varaktighet: 2023 nov. 62023 nov. 9

Publikationsserier

NamnProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
ISSN (tryckt)0272-5428

Konferens

Konferens64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023
Land/TerritoriumUSA
OrtSanta Cruz
Period2023/11/062023/11/09

Bibliografisk information

Publisher Copyright:
© 2023 IEEE.

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Graph Colouring Is Hard on Average for Polynomial Calculus and Nullstellensatz”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här