TY - JOUR
T1 - Green chemistry production of codlemone, the sex pheromone of the Codling Moth (Cydia pomonella), by metabolic engineering of the oilseed crop Camelina (Camelina sativa)
AU - Xia, Yi Han
AU - Wang, Hong Lei
AU - Ding, Bao Jian
AU - Svensson, Glenn P.
AU - Jarl-Sunesson, Carin
AU - Cahoon, Edgar B.
AU - Hofvander, Per
AU - Löfstedt, Christer
N1 - Funding Information:
This work was supported by funding from the Swedish Foundation for Strategic Research (No. RBP 14-0037, Oil Crops for the Future), the European Union’s Horizon 2020 research and innovation programme (No. 760798, OLEFINE), Formas (Nos. 2010-857 and 2015-1336), and the Carl Trygger Foundation for Scientific Research (Nos. CTS 14:307 and CTS KF17:15) to CL, and the Jörgen Lindström’s Scholarship Fund to YHX. The Chinese Scholarship Council supported Yi-Han Xia’s PhD scholarship. We thank Erling Jirle for excellent technical support, and Björn Stensson and Markus Nilsson for providing access to their apple orchards. EBC recognizes support from Nebraska Agricultural Experiment Station-USDA Hatch Act (NEB-30-131). PH recognizes support from the strategic research program Trees and Crops for the Future (TC4F).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/11/11
Y1 - 2021/11/11
N2 - Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.
AB - Synthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.
KW - Acyl-ACP thioesterase
KW - Agrobacterium-based floral-dip transformation
KW - Bioassay
KW - Conjugated double bonds
KW - Multi-gene copies
KW - P19
KW - Plant factory
KW - ∆9 desaturase
U2 - 10.1007/s10886-021-01316-4
DO - 10.1007/s10886-021-01316-4
M3 - Article
C2 - 34762210
AN - SCOPUS:85118862544
SN - 0098-0331
VL - 47
SP - 950
EP - 967
JO - Journal of Chemical Ecology
JF - Journal of Chemical Ecology
ER -