Grid-less estimation of saturated signals

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

This work proposes a frequency and amplitude estimator tailored for noise corrupted signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm estimates the signal parameters by solving an atomic norm minimization problem. The estimator also exploits the waveform information provided by the clipped samples, incorporated in the form of linear constraints that have been augmented by slack variables as to provide robustness to noise. Numerical examples indicate that the algorithm offers preferable performance as compared to methods not exploiting the saturated samples.
Originalspråkengelska
Titel på värdpublikation2017 51st Asilomar Conference on Signals, Systems, and Computers
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor372-376
Antal sidor5
ISBN (elektroniskt)978-1-5386-1823-3
DOI
StatusPublished - 2017
Evenemang51st Asilomar Conferenec on Signals, Systems, and Computers (ASILOMAR 2017) - Asilomar, Pacific Grove, USA
Varaktighet: 2017 okt. 292017 nov. 1

Konferens

Konferens51st Asilomar Conferenec on Signals, Systems, and Computers (ASILOMAR 2017)
Land/TerritoriumUSA
OrtPacific Grove
Period2017/10/292017/11/01

Ämnesklassifikation (UKÄ)

  • Signalbehandling

Citera det här