TY - JOUR
T1 - Growth after the streaming instability
T2 - The radial distance dependence of the planetary growth
AU - Jang, Hyerin
AU - Liu, Beibei
AU - Johansen, Anders
PY - 2022
Y1 - 2022
N2 - Streaming instability is hypothesized to be triggered at particular protoplanetary disk locations where the volume density of the solid particles is enriched comparable to that of the gas. A ring of planetesimals thus forms when this condition is fulfilled locally. These planetesimals collide with each other and accrete inward drifting pebbles from the outer disk to further increase masses. We investigate the growth of the planetesimals that form in a ring-belt at various disk radii. Their initial mass distributions are calculated based on the formula summarized from the streaming instability simulations. We simulate the subsequent dynamical evolution of the planetesimals with a protoplanetary disk model based either on the minimum mass solar nebula (MMSN) or on the Toomre stability criterion. For the MMSN model, both pebble accretion and planetesimal accretion are efficient at a close-in orbit of 0.3 AU, resulting in the emergence of several super-Earth mass planets after 1 Myr. For comparison, only the most massive planetesimals undergo substantial mass growth when they are born at r = 3 AU, while the planetesimals at r = 30 AU experience little or no growth. On the other hand, in the denser Toomre disk, the most massive forming planets can reach Earth mass at t = 1 Myr and reach a mass between that of Neptune and that of Saturn within 3 Myr at 30 AU and 100 AU. Both the pebble and planetesimal accretion rate decrease with disk radial distance. Nevertheless, planetesimal accretion is less pronounced than pebble accretion at more distant disk regions. Taken together, the planets acquire higher masses when the disk has a higher gas density, a higher pebble flux, and/or a lower Stokes number of pebbles.
AB - Streaming instability is hypothesized to be triggered at particular protoplanetary disk locations where the volume density of the solid particles is enriched comparable to that of the gas. A ring of planetesimals thus forms when this condition is fulfilled locally. These planetesimals collide with each other and accrete inward drifting pebbles from the outer disk to further increase masses. We investigate the growth of the planetesimals that form in a ring-belt at various disk radii. Their initial mass distributions are calculated based on the formula summarized from the streaming instability simulations. We simulate the subsequent dynamical evolution of the planetesimals with a protoplanetary disk model based either on the minimum mass solar nebula (MMSN) or on the Toomre stability criterion. For the MMSN model, both pebble accretion and planetesimal accretion are efficient at a close-in orbit of 0.3 AU, resulting in the emergence of several super-Earth mass planets after 1 Myr. For comparison, only the most massive planetesimals undergo substantial mass growth when they are born at r = 3 AU, while the planetesimals at r = 30 AU experience little or no growth. On the other hand, in the denser Toomre disk, the most massive forming planets can reach Earth mass at t = 1 Myr and reach a mass between that of Neptune and that of Saturn within 3 Myr at 30 AU and 100 AU. Both the pebble and planetesimal accretion rate decrease with disk radial distance. Nevertheless, planetesimal accretion is less pronounced than pebble accretion at more distant disk regions. Taken together, the planets acquire higher masses when the disk has a higher gas density, a higher pebble flux, and/or a lower Stokes number of pebbles.
KW - Planets and satellites: formation
KW - Protoplanetary disks
U2 - 10.1051/0004-6361/202243368
DO - 10.1051/0004-6361/202243368
M3 - Article
AN - SCOPUS:85136149135
SN - 0004-6361
VL - 664
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A86
ER -