H-n-perturbations of self-adjoint operators and Krein's resolvent formula

Pavel Kurasov

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Supersingular H-n rank one perturbations of an arbitrary positive self-adjoint operator A acting in the Hilbert space H are investigated. The operator corresponding to the formal expression A(alpha) = A + alpha(phi,.)phi, alpha is an element of R, phi is an element of H-n (A), is determined as a regular operator with pure real spectrum acting in a certain extended Hilbert space H superset of X The resolvent of the operator so defined is given by a certain generalization of Krein's resolvent formula. It is proven that the spectral properties of the operator are described by generalized Nevanlinna functions. The results of [24] are extended to the case of arbitrary integer n greater than or equal to 4.
Originalspråkengelska
Sidor (från-till)437-460
TidskriftIntegral Equations and Operator Theory
Volym45
Nummer4
DOI
StatusPublished - 2003

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”H-n-perturbations of self-adjoint operators and Krein's resolvent formula”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här