Harmonic morphisms from solvable Lie groups

Sigmundur Gudmundsson, Martin Svensson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper we introduce two new methods for constructing harmonic morphisms from solvable Lie groups. The first method yields global solutions from any simply connected nilpotent Lie group and from any Riemannian symmetric space of non-compact type and rank r ≥ 3. The second method provides us with global solutions from any Damek–Ricci space and many non-compact Riemannian symmetric spaces. We then give a continuous family of 3-dimensional solvable Lie groups not admitting any complex-valued harmonic morphisms, not even locally.
Originalspråkengelska
Sidor (från-till)389-408
TidskriftMathematical Proceedings of the Cambridge Philosophical Society
Volym147
Nummer2
DOI
StatusPublished - 2009

Ämnesklassifikation (UKÄ)

  • Geometri

Fingeravtryck

Utforska forskningsämnen för ”Harmonic morphisms from solvable Lie groups”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här