Harmonic morphisms on Lie groups and minimal conformal foliations of codimension two

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Let G be a Lie group equipped with a left-invariant semi-Riemannian metric. Let K be a semisimple subgroup of G generating a left-invariant conformal foliation F of codimension two on G. We then show that the foliation F is minimal. This means that locally the leaves of F are fibres of a complex-valued harmonic morphism. In the Riemannian case, we prove that if the metric restricted to K is biinvariant then F is totally geodesic.

Originalspråkengelska
Artikelnummer105130
TidskriftJournal of Geometry and Physics
Volym198
DOI
StatusPublished - 2024 apr.

Ämnesklassifikation (UKÄ)

  • Matematisk analys

Fingeravtryck

Utforska forskningsämnen för ”Harmonic morphisms on Lie groups and minimal conformal foliations of codimension two”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här