Sammanfattning
Let G be a Lie group equipped with a left-invariant semi-Riemannian metric. Let K be a semisimple subgroup of G generating a left-invariant conformal foliation F of codimension two on G. We then show that the foliation F is minimal. This means that locally the leaves of F are fibres of a complex-valued harmonic morphism. In the Riemannian case, we prove that if the metric restricted to K is biinvariant then F is totally geodesic.
Originalspråk | engelska |
---|---|
Artikelnummer | 105130 |
Tidskrift | Journal of Geometry and Physics |
Volym | 198 |
DOI | |
Status | Published - 2024 apr. |
Ämnesklassifikation (UKÄ)
- Matematisk analys