Forskningsoutput per år
Forskningsoutput per år
Forskningsoutput: Kapitel i bok/rapport/Conference proceeding › Konferenspaper i proceeding › Peer review
Named entity linking is the task of identifying mentions of named things in text, such as “Barack Obama” or “New York”, and linking these mentions to unique identifiers. In this paper, we describe Hedwig, an end-to-end named entity linker, which uses a combination of word and character BILSTM models for mention detection, a Wikidata and Wikipedia-derived knowledge base with global information aggregated over nine language editions, and a PageRank algorithm for entity linking. We evaluated Hedwig on the TAC2017 dataset, consisting of news texts and discussion forums, and we obtained a final score of 59.9% on CEAFmC+, an improvement over our previous generation linker Ugglan, and a trilingual entity link score of 71.9%.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | LREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings |
Redaktörer | Nicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis |
Förlag | European Language Resources Association |
Sidor | 4501-4508 |
Antal sidor | 8 |
ISBN (elektroniskt) | 9791095546344 |
Status | Published - 2020 |
Evenemang | 12th International Conference on Language Resources and Evaluation, LREC 2020 - Marseille, Frankrike Varaktighet: 2020 maj 11 → 2020 maj 16 |
Namn | LREC 2020 - 12th International Conference on Language Resources and Evaluation, Conference Proceedings |
---|
Konferens | 12th International Conference on Language Resources and Evaluation, LREC 2020 |
---|---|
Land/Territorium | Frankrike |
Ort | Marseille |
Period | 2020/05/11 → 2020/05/16 |
Forskningsoutput: Avhandling › Doktorsavhandling (sammanläggning)