High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells

Tong Mu, Lele Wang, Qian Wang, Yang Wu, Patric Jannasch, Jingshuai Yang

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

This work focuses on the development of high temperature polymer electrolyte membranes (HT-PEMs) as key materials for HT-PEM fuel cells (HT-PEMFCs). Recognizing the challenges associated with the phosphoric acid (PA) doped polybenzimidazole (PBI) membranes, including the use of carcinogenic monomers and complex synthesis procedures, this study aims to develop more cost-effective, readily synthesized and high-performance alternatives. A series of superacid-catalyzed polyhydroxyalkylation reactions have been meticulously designed between p-triphenyl and aldehydes bearing imidazole moieties, resulting in a new class of HT-PEMs. It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction. Specifically, the use of 1-methyl-2-imidazole-formaldehyde and 1H-imidazole-4-formaldehyde monomers leads to yield high-viscosity, rigid and ether-free polymers, denoted as PTIm-a and PTIm-b. Membranes fabricated from these polymers, due to their pendent imidazole groups, exhibit an exceptional capacity for PA absorption. Notably, PTIm-a, featuring methylimidazole moieties, demonstrates a superior chemical stability which maintains morphology and structural stability during 350 h of Fenton testing. After being immersed in 75 wt% PA at 40 °C, the PTIm-a membrane achieves a PA content of 152%, maintains a good tensile strength of 13.6 MPa, and exhibits a moderate conductivity of 50.2 mS cm-1 at 180 °C. Under H2/O2 operational conditions, a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm-2 at 180 °C without backpressure. Furthermore, the membrane demonstrates stable cycle stability over 173 h within 18 days period at a current density of 200 mA cm-2, indicating its potential for practical application in HT-PEMFCs. This work contributes innovative strategies for the synthesis of advanced HT-PEMs, offering significant improvements in membrane properties and fuel cell performance, thus expanding the horizons of HT-PEMFC technology.

Originalspråkengelska
Sidor (från-till)512-523
Antal sidor12
TidskriftJournal of Energy Chemistry
Volym98
DOI
StatusPublished - 2024

Ämnesklassifikation (UKÄ)

  • Polymerteknologi
  • Polymerkemi
  • Materialkemi

Fingeravtryck

Utforska forskningsämnen för ”High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här