Holomorphic harmonic morphisms from four-dimensional non-Einstein manifolds

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We construct 4-dimensional Riemannian Lie groups carrying left-invariant conformal foliations with minimal leaves of codimension 2. We show that these foliations are holomorphic with respect to an (integrable) Hermitian structure which is not Kähler. We then prove that the Riemannian Lie groups constructed are not Einstein manifolds. This answers an important open question in the theory of complex-valued harmonic morphisms from Riemannian 4-manifolds.
Originalspråkengelska
Artikelnummer1550006
TidskriftInternational Journal of Mathematics
Volym26
Nummer1
DOI
StatusPublished - 2015

Ämnesklassifikation (UKÄ)

  • Geometri

Fingeravtryck

Utforska forskningsämnen för ”Holomorphic harmonic morphisms from four-dimensional non-Einstein manifolds”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här