TY - JOUR
T1 - Hybrid FeNiOOH/α-Fe2O3/Graphene Photoelectrodes with Advanced Water Oxidation Performance
AU - Kormányos, Attila
AU - Kecsenovity, Egon
AU - Honarfar, Alireza
AU - Pullerits, Tönu
AU - Janáky, Csaba
PY - 2020/8/3
Y1 - 2020/8/3
N2 - In this study, the photoelectrochemical behavior of electrodeposited FeNiOOH/Fe2O3/graphene nanohybrid electrodes is investigated, which has precisely controlled structure and composition. The photoelectrode assembly is designed in a bioinspired manner where each component has its own function: Fe2O3 is responsible for the absorption of light, the graphene framework for proper charge carrier transport, while the FeNiOOH overlayer for facile water oxidation. The effect of each component on the photoelectrochemical behavior is studied by linear sweep photovoltammetry, incident photon-to-charge carrier conversion efficiency measurements, and long-term photoelectrolysis. 2.6 times higher photocurrents are obtained for the best-performing FeNiOOH/Fe2O3/graphene system compared to its pristine Fe2O3 counterpart. Transient absorption spectroscopy measurements reveal an increased hole-lifetime in the case of the Fe2O3/graphene samples. Long-term photoelectrolysis measurements in combination with Raman spectroscopy, however, prove that the underlying nanocarbon framework is corroded by the photogenerated holes. This issue is tackled by the electrodeposition of a thin FeNiOOH overlayer, which rapidly accepts the photogenerated holes from Fe2O3, thus eliminating the pathway leading to the corrosion of graphene.
AB - In this study, the photoelectrochemical behavior of electrodeposited FeNiOOH/Fe2O3/graphene nanohybrid electrodes is investigated, which has precisely controlled structure and composition. The photoelectrode assembly is designed in a bioinspired manner where each component has its own function: Fe2O3 is responsible for the absorption of light, the graphene framework for proper charge carrier transport, while the FeNiOOH overlayer for facile water oxidation. The effect of each component on the photoelectrochemical behavior is studied by linear sweep photovoltammetry, incident photon-to-charge carrier conversion efficiency measurements, and long-term photoelectrolysis. 2.6 times higher photocurrents are obtained for the best-performing FeNiOOH/Fe2O3/graphene system compared to its pristine Fe2O3 counterpart. Transient absorption spectroscopy measurements reveal an increased hole-lifetime in the case of the Fe2O3/graphene samples. Long-term photoelectrolysis measurements in combination with Raman spectroscopy, however, prove that the underlying nanocarbon framework is corroded by the photogenerated holes. This issue is tackled by the electrodeposition of a thin FeNiOOH overlayer, which rapidly accepts the photogenerated holes from Fe2O3, thus eliminating the pathway leading to the corrosion of graphene.
KW - composite materials
KW - interface engineering
KW - photoelectrochemistry
KW - solar fuels
KW - transient absorption spectroscopy
U2 - 10.1002/adfm.202002124
DO - 10.1002/adfm.202002124
M3 - Article
C2 - 32774199
AN - SCOPUS:85087168565
SN - 1616-3028
VL - 30
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 31
M1 - 2002124
ER -