Sammanfattning
In this paper, we introduce a novel framework for semi-parametric estimation of an unknown number of signals, each parametrized by a group of components. Via a reformulation of the covariance fitting criteria, we formulate a convex optimization problem over a grid of candidate representations, promoting solutions with only a few active groups. Utilizing the covariance fitting allows for a hyperparameter-free estimation procedure, highly robust against coherency between candidates, while still allowing for a computationally efficient implementation. Numerical simulations illustrate how the proposed method offers a performance similar to the group-LASSO for incoherent dictionaries, and superior performance for coherent dictionaries.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Conference Record of the 50th Asilomar Conference on Signals, Systems and Computers, ACSSC 2016 |
Förlag | IEEE Computer Society |
Sidor | 394-398 |
Antal sidor | 5 |
ISBN (elektroniskt) | 9781538639542 |
DOI | |
Status | Published - 2017 mars 1 |
Evenemang | 50th Asilomar Conference on Signals, Systems and Computers, ACSSC 2016 - Pacific Grove, USA Varaktighet: 2016 nov. 6 → 2016 nov. 9 |
Konferens
Konferens | 50th Asilomar Conference on Signals, Systems and Computers, ACSSC 2016 |
---|---|
Land/Territorium | USA |
Ort | Pacific Grove |
Period | 2016/11/06 → 2016/11/09 |
Ämnesklassifikation (UKÄ)
- Sannolikhetsteori och statistik
- Signalbehandling