Projekt per år
Sammanfattning
Resource management in cloud computing is a difficult problem, as one is often tasked with balancing between adequate service to clients and cost minimization in dynamic environments of many interconnected components. To make correct decisions in these environments, good performance models are necessary. A common modeling methodology is to use networks of queues, but as these are prohibitively expensive to evaluate for many realtime applications, different approximation methods for important metrics are frequently employed. One such method—that provides both transient solutions and short, scalable computation times—is the fluid model, which approximates the dynamics of the mean queue lengths using a system of ordinary differential equations. However, finding a fluid model that can adequately approximate an arbitrary queueing network is in general difficult. In this paper, we extend the state of the art with the following three contributions. First, we show that for any mixed multiclass queueing network of processor sharing and delay queues with phasetype service time distributions, such a fluid model can be found via the meanfield approximation. Furthermore, we propose an improved model based on smoothing of the processor share function that improves the performance of certain systems. Finally, using the smoothed meanfield model, we introduce an accurate closedform approximation of the response time CDF over any subset of classes and queues. The contributions are further evaluated in a large simulation experiment, which shows that they can be used to accurately predict performance metrics under some system perturbations common in cloud computing.
Originalspråk  engelska 

Artikelnummer  102231 
Tidskrift  Performance Evaluation 
Volym  151 
DOI  
Status  Published  2021 sep. 23 
Ämnesklassifikation (UKÄ)
 Elektroteknik och elektronik
Fingeravtryck
Utforska forskningsämnen för ”Improving the MeanField Fluid Model of Processor Sharing Queueing Networks for Dynamic Performance Models in Cloud Computing”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
 1 Avslutade

EventBased Information Fusion for the SelfAdaptive Cloud
Ruuskanen, J., Cervin, A. & Årzén, K.
2017/09/01 → 2022/12/01
Projekt: Avhandling