TY - JOUR
T1 - Increases in external cause mortality due to high and low temperatures
T2 - evidence from northeastern Europe
AU - Orru, Hans
AU - Åström, Daniel Oudin
PY - 2017
Y1 - 2017
N2 - The relationship between temperature and mortality is well established but has seldom been investigated in terms of external causes. In some Eastern European countries, external cause mortality is substantial. Deaths owing to external causes are the third largest cause of mortality in Estonia, after cardiovascular disease and cancer. Death rates owing to external causes may reflect behavioural changes among a population. The aim for the current study was to investigate if there is any association between temperature and external cause mortality, in Estonia. We collected daily information on deaths from external causes (ICD-10 diagnosis codes V00–Y99) and maximum temperatures over the period 1997–2013. The relationship between daily maximum temperature and mortality was investigated using Poisson regression, combined with a distributed lag non-linear model considering lag times of up to 10 days. We found significantly higher mortality owing to external causes on hot (the same and previous day) and cold days (with a lag of 1–3 days). The cumulative relative risks for heat (an increase in temperature from the 75th to 99th percentile) were 1.24 (95% confidence interval, 1.14–1.34) and for cold (a decrease from the 25th to 1st percentile) 1.19 (1.03–1.38). Deaths due to external causes might reflect changes in behaviour among a population during periods of extreme hot and cold temperatures and should therefore be investigated further, because such deaths have a severe impact on public health, especially in Eastern Europe where external mortality rates are high.
AB - The relationship between temperature and mortality is well established but has seldom been investigated in terms of external causes. In some Eastern European countries, external cause mortality is substantial. Deaths owing to external causes are the third largest cause of mortality in Estonia, after cardiovascular disease and cancer. Death rates owing to external causes may reflect behavioural changes among a population. The aim for the current study was to investigate if there is any association between temperature and external cause mortality, in Estonia. We collected daily information on deaths from external causes (ICD-10 diagnosis codes V00–Y99) and maximum temperatures over the period 1997–2013. The relationship between daily maximum temperature and mortality was investigated using Poisson regression, combined with a distributed lag non-linear model considering lag times of up to 10 days. We found significantly higher mortality owing to external causes on hot (the same and previous day) and cold days (with a lag of 1–3 days). The cumulative relative risks for heat (an increase in temperature from the 75th to 99th percentile) were 1.24 (95% confidence interval, 1.14–1.34) and for cold (a decrease from the 25th to 1st percentile) 1.19 (1.03–1.38). Deaths due to external causes might reflect changes in behaviour among a population during periods of extreme hot and cold temperatures and should therefore be investigated further, because such deaths have a severe impact on public health, especially in Eastern Europe where external mortality rates are high.
KW - Distributed lag non-linear models
KW - External causes
KW - Temperature-related mortality
UR - http://www.scopus.com/inward/record.url?scp=84995766492&partnerID=8YFLogxK
U2 - 10.1007/s00484-016-1270-4
DO - 10.1007/s00484-016-1270-4
M3 - Article
C2 - 27858164
AN - SCOPUS:84995766492
SN - 0020-7128
VL - 61
SP - 963
EP - 966
JO - International Journal of Biometeorology
JF - International Journal of Biometeorology
IS - 5
ER -