Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces

Leonard Papenmeier, Luigi Nardi, Matthias Poloczek

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Recent advances have extended the scope of Bayesian optimization (BO) to expensive-to-evaluate black-box functions with dozens of dimensions, aspiring to unlock impactful applications, for example, in the life sciences, neural architecture search, and robotics. However, a closer examination reveals that the state-of-the-art methods for high-dimensional Bayesian optimization (HDBO) suffer from degrading performance as the number of dimensions increases, or even risk failure if certain unverifiable assumptions are not met. This paper proposes BAxUS that leverages a novel family of nested random subspaces to adapt the space it optimizes over to the problem. This ensures high performance while removing the risk of failure, which we assert via theoretical guarantees. A comprehensive evaluation demonstrates that BAxUS achieves better results than the state-of-the-art methods for a broad set of applications.
Originalspråkengelska
Titel på värdpublikationAdvances in Neural Information Processing Systems, NeurIPS 2022
FörlagCurran Associates, Inc
ISBN (tryckt)9781713871088
StatusPublished - 2022
EvenemangAdvances in Neural Information Processing Systems 35, NeurIPS 2022 - New Oreleans, USA
Varaktighet: 2022 nov. 282022 dec. 9

Konferens

KonferensAdvances in Neural Information Processing Systems 35, NeurIPS 2022
Land/TerritoriumUSA
OrtNew Oreleans
Period2022/11/282022/12/09

Ämnesklassifikation (UKÄ)

  • Robotteknik och automation

Fingeravtryck

Utforska forskningsämnen för ”Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här