Insight of Anomaly Detection with NWDAF in 5G

Yachao Yuan, Christian Gehrmann, Jakob Sternby, Luis Barriga

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Data analytics is regarded as an important function of 5G networks. The Network Data Analytics Function (NWDAF) is standardized in 3GPP to enhance 5G network performance by analyzing data from network functions and user equipment. Abnormal behavior detection, which is part of the NWDAF framework, has the potential to be a powerful tool to improve 5G network security. Despite this, only limited research has been conducted in the area so far. This paper explains abnormal behavior detection in NWDAF specified in 3GPP. Furthermore, we extensively review the related work and summarize open problems and provide possible future research directions.
Originalspråkengelska
Titel på värdpublikation 2022 International Conference on Computer, Information and Telecommunication Systems (CITS)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
ISBN (elektroniskt)978-1-6654-8615-6
ISBN (tryckt)978-1-6654-8616-3
DOI
StatusPublished - 2022 juni 21
Evenemang2022 International Conference on Computer, Information and Telecommunication Systems (CITS) - Piraeus, Grekland
Varaktighet: 2022 juli 132022 juli 15

Konferens

Konferens2022 International Conference on Computer, Information and Telecommunication Systems (CITS)
Land/TerritoriumGrekland
OrtPiraeus
Period2022/07/132022/07/15

Ämnesklassifikation (UKÄ)

  • Kommunikationssystem

Fingeravtryck

Utforska forskningsämnen för ”Insight of Anomaly Detection with NWDAF in 5G”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här