Sammanfattning

Photonic solutions are potentially highly competitive for energy-efficient neuromorphic computing. However, a combination of specialized nanostructures is needed to implement all neuro-biological functionality. Here, we show that donor-acceptor Stenhouse adduct dyes integrated with III-V semiconductor nano-optoelectronics have combined excellent functionality for bio-inspired neural networks. The dye acts as synaptic weights in the optical interconnects, while the nano-optoelectronics provide neuron reception, interpretation and emission of light signals. These dyes can reversibly switch from absorbing to non-absorbing states, using specific wavelength ranges. Together, they show robust and predictable switching, low energy thermal reset and a memory dynamic range from days to sub-seconds that allows both short- and long-term memory operation at natural timescales. Furthermore, as the dyes do not need electrical connections, on-chip integration is simple. We illustrate the functionality using individual nanowire photodiodes as well as arrays. Based on the experimental performance metrics, our on-chip solution is capable of operating an anatomically validated model of the insect brain navigation complex.
Originalspråkengelska
Artikelnummer11
TidskriftCommunications Materials
Volym6
Nummer1
DOI
StatusPublished - 2025 jan.

Ämnesklassifikation (UKÄ)

  • Annan fysik

Fingeravtryck

Utforska forskningsämnen för ”Integrating molecular photoswitch memory with nanoscale optoelectronics for neuromorphic computing”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här