TY - JOUR
T1 - Interactive effects of pressurized ventilation, water depth and substrate conditions on Phragmites australis
AU - Strand, VV
AU - Weisner, Stefan
N1 - The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Limnology (Closed 2011) (011007000)
PY - 2002
Y1 - 2002
N2 - Pressurized ventilation acts to increase the oxygen supply to roots and rhizomes in some species of emergent plants. In a greenhouse experiment, we investigated how pressurized ventilation affected growth, biomass allocation and mineral content of Phragmites australis in two water depths (15 cm or 75 cm) and two substrates (organic sediment or sand). Through perforating each stem above the water surface, pressurized ventilation was inhibited without affecting oxygen diffusion. In controls, 10-20% of the stems were perforated to make certain that lack of efflux sites would not limit pressurized ventilation. Plants with inhibited pressurized ventilation had lower oxygen concentrations in their stem bases than control plants. Growth was lower in plants with inhibited pressurized ventilation compared to controls except when plants grew in a combination of sand and shallow water. In plants grown in an organic sediment, but not in those grown in sand, inhibition of pressurized ventilation resulted in decreased biomass allocation to soil roots but increased allocation to aquatic roots. Stem perforation affected the tissue concentrations of nitrogen, phosphorus, magnesium, manganese and aluminium but not of calcium or iron. We suggest that the lower growth in plants with inhibited pressurized ventilation was caused by decreased mineral uptake, which may have resulted from the decreased proportional allocation to soil root weight, from decreased mineral availability or from impaired root function. In plants grown in sand in shallow water, diffusion seemed to cover the oxygen demand, as pressurized ventilation did not affect growth.
AB - Pressurized ventilation acts to increase the oxygen supply to roots and rhizomes in some species of emergent plants. In a greenhouse experiment, we investigated how pressurized ventilation affected growth, biomass allocation and mineral content of Phragmites australis in two water depths (15 cm or 75 cm) and two substrates (organic sediment or sand). Through perforating each stem above the water surface, pressurized ventilation was inhibited without affecting oxygen diffusion. In controls, 10-20% of the stems were perforated to make certain that lack of efflux sites would not limit pressurized ventilation. Plants with inhibited pressurized ventilation had lower oxygen concentrations in their stem bases than control plants. Growth was lower in plants with inhibited pressurized ventilation compared to controls except when plants grew in a combination of sand and shallow water. In plants grown in an organic sediment, but not in those grown in sand, inhibition of pressurized ventilation resulted in decreased biomass allocation to soil roots but increased allocation to aquatic roots. Stem perforation affected the tissue concentrations of nitrogen, phosphorus, magnesium, manganese and aluminium but not of calcium or iron. We suggest that the lower growth in plants with inhibited pressurized ventilation was caused by decreased mineral uptake, which may have resulted from the decreased proportional allocation to soil root weight, from decreased mineral availability or from impaired root function. In plants grown in sand in shallow water, diffusion seemed to cover the oxygen demand, as pressurized ventilation did not affect growth.
U2 - 10.1007/s00442-002-0915-7
DO - 10.1007/s00442-002-0915-7
M3 - Article
SN - 1432-1939
VL - 131
SP - 490
EP - 497
JO - Oecologia
JF - Oecologia
IS - 4
ER -