Interpolation classes and matrix monotone functions

Yacin Ameur, Sten Kaijser, Sergei Silvestrov

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

An interpolation function of order n is a positive function -/+ on (0, infinity) such that vertical bar vertical bar -/+ (A)(1/2) T -/+ (A)-(1/2) vertical bar vertical bar <= max(vertical bar vertical bar T vertical bar vertical bar, vertical bar A(1/2)TA(-1/2) vertical bar vertical bar) for all n x ii matrices T and A such that A is positive definite. By a theorem of Donoghue, the class C-n of interpolation functions of order n coincides with the class of functions -/+ such that for each n-subset S = {lambda i}(n)(i=1)of (0,infinity) there exists a positive Pick function h on (0, co) interpolating -/+ at S. This note comprises a study of the classes C-n and their relations to matrix monotone functions of finite order. We also consider interpolation functions on general unital C*-algebras.
Originalspråkengelska
Sidor (från-till)409-427
TidskriftJournal of Operator Theory
Volym57
Nummer2
StatusPublished - 2007

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Interpolation classes and matrix monotone functions”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här