Inverse scattering problem on the half line and positon solutions of the KdV equation

Pavel Kurasov

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The inverse scattering problem for the Schrodinger operator on the half-line is studied for potentials of positon type with long range oscillating tails at infinity. The inverse problem can be solved for the scattering matrices with arbitrary finite phase shift. Solution of the inverse problem is unique if the following scattering data are given: scattering matrix, energies of the bound states and the corresponding normalizing constants zeroes of the spectral density on the real line
Originalspråkengelska
Titel på värdpublikationJournal of Technical Physics
Sidor503-507
Antal sidor4
Volym37
StatusPublished - 1996
EvenemangInternational Conference on Nonlinear Dynamics, Chaotic and Complex Systems - Zakopane, Polen
Varaktighet: 1995 nov. 71995 nov. 11

Publikationsserier

Namn
Nummer3-4
Volym37
ISSN (tryckt)0324-8313

Konferens

KonferensInternational Conference on Nonlinear Dynamics, Chaotic and Complex Systems
Land/TerritoriumPolen
OrtZakopane
Period1995/11/071995/11/11

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Inverse scattering problem on the half line and positon solutions of the KdV equation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här