Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper, we investigate the usefulness of adding a box-constraint to the minimization of functionals consisting of a data-fidelity term and a total variation regularization term. In particular, we show that in certain applications an additional box-constraint does not effect the solution at all, i.e., the solution is the same whether a box-constraint is used or not. On the contrary, i.e., for applications where a box-constraint may have influence on the solution, we investigate how much it effects the quality of the restoration, especially when the regularization parameter, which weights the importance of the data term and the regularizer, is chosen suitable. In particular, for such applications, we consider the case of a squared L 2 data-fidelity term. For computing a minimizer of the respective box-constrained optimization problems a primal-dual semi-smooth Newton method is presented, which guarantees superlinear convergence.

Originalspråkengelska
Artikelnummer12
TidskriftJournal of Imaging
Volym4
Nummer1
DOI
StatusPublished - 2018
Externt publiceradJa

Bibliografisk information

Publisher Copyright:
© 2018 by the author. Licensee MDPI, Basel, Switzerland.

Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik
  • Datorgrafik och datorseende

Fingeravtryck

Utforska forskningsämnen för ”Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här