Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation

Catalin Ionescu, Joao Carreira, Cristian Sminchisescu

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Recently, the emergence of Kinect systems has demonstrated the benefits of predicting an intermediate body part labeling for 3D human pose estimation, in conjunction with RGB-D imagery. The availability of depth information plays a critical role, so an important question is whether a similar representation can be developed with sufficient robustness in order to estimate 3D pose from RGB images. This paper provides evidence for a positive answer, by leveraging (a) 2D human body part labeling in images, (b) second-order label-sensitive pooling over dynamically computed regions resulting from a hierarchical decomposition of the body, and (c) iterative structured-output modeling to contextualize the process based on 3D pose estimates. For robustness and generalization, we take advantage of a recent large-scale 3D human motion capture dataset, Human3.6M[18] that also has human body part labeling annotations available with images. We provide extensive experimental studies where alternative intermediate representations are compared and report a substantial 33% error reduction over competitive discriminative baselines that regress 3D human pose against global HOG features.
Originalspråkengelska
Titel på värdpublikation2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor1661-1668
DOI
StatusPublished - 2014
Evenemang27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014 - Columbus, OH, USA
Varaktighet: 2014 juni 232014 juni 28

Publikationsserier

Namn
ISSN (tryckt)1063-6919

Konferens

Konferens27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014
Land/TerritoriumUSA
OrtColumbus, OH
Period2014/06/232014/06/28

Ämnesklassifikation (UKÄ)

  • Datorgrafik och datorseende

Fingeravtryck

Utforska forskningsämnen för ”Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här