Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies

Sara Linse, Tom Scheidt, Katja Bernfur, Michele Vendruscolo, Christopher M. Dobson, Samuel I.A. Cohen, Eimantas Sileikis, Martin Lundqvist, Fang Qian, Tiernan O’Malley, Thierry Bussiere, Paul H. Weinreb, Catherine K. Xu, Georg Meisl, Sean R.A. Devenish, Tuomas P.J. Knowles, Oskar Hansson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

17 !!Citations (SciVal)

Sammanfattning

The amyloid cascade hypothesis, according to which the self-assembly of amyloid-β peptide (Aβ) is a causative process in Alzheimer’s disease, has driven many therapeutic efforts for the past 20 years. Failures of clinical trials investigating Aβ-targeted therapies have been interpreted as evidence against this hypothesis, irrespective of the characteristics and mechanisms of action of the therapeutic agents, which are highly challenging to assess. Here, we combine kinetic analyses with quantitative binding measurements to address the mechanism of action of four clinical stage anti-Aβ antibodies, aducanumab, gantenerumab, bapineuzumab and solanezumab. We quantify the influence of these antibodies on the aggregation kinetics and on the production of oligomeric aggregates and link these effects to the affinity and stoichiometry of each antibody for monomeric and fibrillar forms of Aβ. Our results reveal that, uniquely among these four antibodies, aducanumab dramatically reduces the flux of Aβ oligomers.

Originalspråkengelska
Sidor (från-till)1125-1133
Antal sidor9
TidskriftNature Structural and Molecular Biology
Volym27
Utgåva12
DOI
StatusPublished - 2020 dec

Ämnesklassifikation (UKÄ)

  • Klinisk laboratoriemedicin

Fingeravtryck

Utforska forskningsämnen för ”Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här