KRW composition theorems via lifting

Susanna F. De Rezende, Or Meir, Jakob Nordstrom, Toniann Pitassi, Robert Robere

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., mathrm{P} nsubseteq text{NC}{1}). Karchmer, Raz, and Wigderson [13] suggested to approach this problem by proving that depth complexity behaves'as expected' with respect to the composition of functions f diamond g. They showed that the validity of this conjecture would imply that mathrm{P} nsubseteq text{NC}{1}. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function, but only for few inner functions. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone version of the KRW conjecture. We prove it for every monotone inner function whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone setting, we introduce a new notion of semi-monotone composition, which combines the non-monotone complexity of the outer function with the monotone complexity of the inner function. In this setting, we prove the KRW conjecture for a similar selection of inner functions, but only for a specific choice of the outer function f.

Originalspråkengelska
Titel på värdpublikationProceedings - 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020
FörlagIEEE Computer Society
Sidor43-49
Antal sidor7
ISBN (elektroniskt)9781728196213
ISBN (tryckt)978-1-7281-9622-0
DOI
StatusPublished - 2020 nov.
Evenemang61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020 - Virtual, Durham, USA
Varaktighet: 2020 nov. 162020 nov. 19

Publikationsserier

NamnProceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
Volym2020-November
ISSN (tryckt)0272-5428

Konferens

Konferens61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020
Land/TerritoriumUSA
OrtVirtual, Durham
Period2020/11/162020/11/19

Bibliografisk information

Publisher Copyright:
© 2020 IEEE.

Ämnesklassifikation (UKÄ)

  • Matematisk analys
  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”KRW composition theorems via lifting”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här