Large-amplitude steady gravity water waves with general vorticity and critical layers

Jörg Weber, Erik Wahlén

Forskningsoutput: Working paper/PreprintPreprint (i preprint-arkiv)

Sammanfattning

We consider two-dimensional steady periodic gravity waves on water of finite depth with a prescribed but arbitrary vorticity distribution. The water surface is allowed to be overhanging and no assumptions regarding the absence of stagnation points and critical layers are made. Using conformal mappings and a new Babenko-type reformulation of Bernoulli's equation, we uncover an equivalent formulation as "identity plus compact", which is amenable to Rabinowitz' global bifurcation theorem. This allows us to construct a global connected set of solutions, bifurcating from laminar flows with a flat surface. Moreover, a nodal analysis is carried out for these solutions under a monotonicity assumption on the vorticity function.
Originalspråkengelska
UtgivarearXiv.org
DOI
StatusPublished - 2022

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”Large-amplitude steady gravity water waves with general vorticity and critical layers”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här