Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs) to Task Variations

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

The ability to learn new tasks and quickly adapt to different variations or dimensions is an important attribute in agile robotics. In our previous work, we have explored Behavior Trees and Motion Generators (BTMGs) as a robot arm policy representation to facilitate the learning and execution of assembly tasks. The current implementation of the BTMGs for a specific task may not be robust to the changes in the environment and may not generalize well to different variations of tasks. We propose to extend the BTMG policy representation with a module that predicts BTMG parameters for a new task variation. To achieve this, we propose a model that combines a Gaussian process and a weighted support vector machine classifier. This model predicts the performance measure and the feasibility of the predicted policy with BTMG parameters and task variations as inputs. Using the outputs of the model, we then construct a surrogate reward function that
is utilized within an optimizer to maximize the performance of a task over BTMG parameters for a fixed task variation. To demonstrate the effectiveness of our proposed approach, we conducted experimental evaluations on push and obstacle avoidance tasks in simulation and with a real KUKA iiwa robot. Furthermore, we compared the performance of our approach with four baseline methods.
Originalspråkengelska
Titel på värdpublikation2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
ISBN (elektroniskt)978-1-6654-9190-7
ISBN (tryckt)978-1-6654-9191-4
DOI
StatusPublished - 2023
EvenemangIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, USA
Varaktighet: 2023 okt. 12023 okt. 5

Konferens

KonferensIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Land/TerritoriumUSA
OrtDetroit
Period2023/10/012023/10/05

Ämnesklassifikation (UKÄ)

  • Robotteknik och automation

Fingeravtryck

Utforska forskningsämnen för ”Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs) to Task Variations”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här