Likelihood-free stochastic approximation EM for inference in complex models

Umberto Picchini

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function of model parameters. While SAEM is best suited for models having a tractable "complete likelihood" function, its application to moderately complex models is a difficult or even impossible task. We show how to construct a likelihood-free version of SAEM by using the "synthetic likelihood" paradigm. Our method is completely plug-and-play, requires almost no tuning and can be applied to both static and dynamic models. Four simulation studies illustrate the method, including a stochastic differential equation model, a stochastic Lotka-Volterra model and data from g-and-k distributions. MATLAB code is available as supplementary material.
Originalspråkengelska
Sidor (från-till)861-881
Antal sidor26
TidskriftCommunications in Statistics: Simulation and Computation
Volym48
Nummer3
Tidigt onlinedatum2018 jan. 18
DOI
StatusPublished - 2019

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Likelihood-free stochastic approximation EM for inference in complex models”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här