Projekt per år
Sammanfattning
A maximum likelihood methodology for the parameters of models with an intractable likelihood is introduced. We produce a likelihood-free version of the stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function of model parameters. While SAEM is best suited for models having a tractable "complete likelihood" function, its application to moderately complex models is a difficult or even impossible task. We show how to construct a likelihood-free version of SAEM by using the "synthetic likelihood" paradigm. Our method is completely plug-and-play, requires almost no tuning and can be applied to both static and dynamic models. Four simulation studies illustrate the method, including a stochastic differential equation model, a stochastic Lotka-Volterra model and data from g-and-k distributions. MATLAB code is available as supplementary material.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 861-881 |
Antal sidor | 26 |
Tidskrift | Communications in Statistics: Simulation and Computation |
Volym | 48 |
Nummer | 3 |
Tidigt onlinedatum | 2018 jan. 18 |
DOI | |
Status | Published - 2019 |
Ämnesklassifikation (UKÄ)
- Sannolikhetsteori och statistik
Fingeravtryck
Utforska forskningsämnen för ”Likelihood-free stochastic approximation EM for inference in complex models”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 1 Aktiva
-
Stochastic modelling of protein folding and likelihood-free statistical inference methods
Picchini, U., Forman, J., Lindorff-Larsen, K. & Wiqvist, S.
2015/01/01 → …
Projekt: Forskning