Limit Theorems and Fluctuations for Point Vortices of Generalized Euler Equations

Carina Geldhauser, Marco Romito

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

We prove a mean field limit, a law of large numbers and a central limit theorem for a system of point vortices on the 2D torus at equilibrium with positive temperature. The point vortices are formal solutions of a class of equations generalising the Euler equations, and are also known in the literature as generalised inviscid SQG. The mean-field limit is a steady solution of the equations, the CLT limit is a stationary distribution of the equations.

Originalspråkengelska
Artikelnummer60
TidskriftJournal of Statistical Physics
Volym182
Nummer3
DOI
StatusPublished - 2021

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Limit Theorems and Fluctuations for Point Vortices of Generalized Euler Equations”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här