Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM

Pontus Giselsson, Stephen Boyd

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Recently, several convergence rate results for Douglas-Rachford splitting and the alternating direction method of multipliers (ADMM) have been presented in the literature. In this paper, we show global linear convergence rate bounds for Douglas-Rachford splitting and ADMM under strong convexity and smoothness assumptions. We further show that the rate bounds are tight for the class of problems under consideration for all feasible algorithm parameters. For problems that satisfy the assumptions, we show how to select step-size and metric for the algorithm that optimize the derived convergence rate bounds. For problems with a similar structure that do not satisfy the assumptions, we present heuristic step-size and metric selection methods.

Originalspråkengelska
Artikelnummer7465685
Sidor (från-till)532-544
Antal sidor13
TidskriftIEEE Transactions on Automatic Control
Volym62
Nummer2
DOI
StatusPublished - 2017 feb. 1

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”Linear Convergence and Metric Selection for Douglas-Rachford Splitting and ADMM”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här