Linear Processes in Stochastic Population Dynamics: Theory and Application to Insect Development

Hernán Solari, Mario Natiello

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review


We consider stochastic population processes (Markov jump processes)
that develop as consequence of the occurrence of randon events at
random time-inervals. The population is divided into sub-populations or compartments. The events occur at rates that depend linearly with the number of individuals in the different described compartments. The dynamics is presented in terms of a Kolmogorov Forward Equation in the space of events and projected onto the space of populations when needed. The general properties of the problem are discussed. Solutions are obtained using a revised version of the Method of Characteristics. After a few examples of exact solutions we systematically develop short-time-approximations to the problem. While the lowest order approximation matches the Poisson and multinomial heuristics previously
proposed, higher-order approximations are completely new. Further, we
analyse a model for insect development as a sequence of E developmental
stages regulated by rates that are linear in the implied subpopulations. Transitions to the next stage compete with death at all times. The process ends at a predetermined stage, for example pupation or adult emergence. In its simpler version all the stages are distributed with the same characteristic time.
TidskriftThe Scientific World Journal
StatusPublished - 2014

Ämnesklassifikation (UKÄ)

  • Matematik


Utforska forskningsämnen för ”Linear Processes in Stochastic Population Dynamics: Theory and Application to Insect Development”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här