Locally adaptive total variation for removing mixed Gaussian–impulse noise

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The minimization of a functional consisting of a combined L1/L2 data fidelity term and a total variation regularization term with a locally varying regularization parameter for the removal of mixed Gaussian–impulse noise is considered. Based on a related locally constrained optimization problem, algorithms for automatically selecting the spatially varying parameter are presented. Numerical experiments for image denoising are shown, which demonstrate that the locally varying parameter selection algorithms are able to generate solutions which are of higher restoration quality than solutions obtained with scalar parameters.

Originalspråkengelska
Sidor (från-till)298-316
Antal sidor19
TidskriftInternational Journal of Computer Mathematics
Volym96
Nummer2
DOI
StatusPublished - 2019 feb. 1
Externt publiceradJa

Bibliografisk information

Publisher Copyright:
© 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Locally adaptive total variation for removing mixed Gaussian–impulse noise”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här