Look-Ahead Screening Rules for the Lasso

Johan Larsson

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

8 Nedladdningar (Pure)

Sammanfattning

The lasso is a popular method to induce shrinkage and sparsity in the solution vector (coefficients) of regression problems, particularly when there are many predictors relative to the number of observations. Solving the lasso in this high-dimensional setting can, however, be computationally demanding. Fortunately, this demand can be alleviated via the use of screening rules that discard predictors prior to fitting the model, leading to a reduced problem to be solved. In this paper, we present a new screening strategy: look-ahead screening. Our method uses safe screening rules to find a range of penalty values for which a given predictor cannot enter the model, thereby screening predictors along the remainder of the path. In experiments we show that these look-ahead screening rules outperform the active warm-start version of the Gap Safe rules.
Originalspråkengelska
Titel på värdpublikation22nd European young statisticians meeting - proceedings
RedaktörerAndreas Makridis, Fotios S. Milienos, Panagiotis Papastamoulis, Christina Parpoula, Athanasios Rakitzis
FörlagPanteion University of Social and Political Sciences
Sidor61-65
Antal sidor5
ISBN (tryckt)978-960-7943-23-1
StatusPublished - 2021 sep. 6
Evenemang22nd European Young Statisticians Meeting
- Virtual, Athens (Online)
Varaktighet: 2021 sep. 62021 sep. 10

Konferens

Konferens22nd European Young Statisticians Meeting
OrtAthens (Online)
Period2021/09/062021/09/10

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Look-Ahead Screening Rules for the Lasso”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här