TY - JOUR
T1 - Low-dose busulphan conditioning and neonatal stem cell transplantation preserves vision and restores hematopoiesis in severe murine osteopetrosis.
AU - Askmyr, Maria
AU - Holmberg, Johan K
AU - Flores Bjurström, Carmen
AU - Ehinger, Mats
AU - Hjalt, Tord
AU - Richter, Johan
N1 - The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Department of Experimental Medical Science (013210000), Pathology, (Lund) (013030000), Division of Molecular Medicine and Gene Therapy (013022010), Muscle biology (013212015)
PY - 2009
Y1 - 2009
N2 - OBJECTIVE: Infantile malignant osteopetrosis is a fatal disease caused by lack of functional osteoclasts. In most of patients, TCIRG1, encoding a subunit of a proton pump essential for bone resorption, is mutated. Osteopetrosis leads to bone marrow failure and blindness due to optic nerve compression. Oc/oc mice have a deletion in Tcirg1 and die around 3 to 4 weeks, but can be rescued by neonatal stem cell transplantation (SCT) after irradiation conditioning. However, as irradiation of neonatal mice results in retinal degeneration, we wanted to investigate whether conditioning with busulphan prior to SCT can lead to preservation of vision and reversal of osteopetrosis in the oc/oc mouse model. MATERIALS AND METHODS: Pregnant dams were conditioned with busulphan and their litters transplanted with 1 x 10(6) normal lineage-depleted bone marrow cells intravenously or intraperitoneally. Mice were followed in terms of survival and engraftment level, as well as with peripheral blood lineage analysis, bone and eye histopathology and a visual-tracking drum test to assess vision. RESULTS: Busulphan at 15 mg/kg was toxic to oc/oc mice. However, six of seven oc/oc mice conditioned with busulphan 7.5 mg/kg survived past the normal lifespan with 10% engraftment, correction of the skeletal phenotype, and normalization of peripheral blood lineages. Busulphan, in contrast to irradiation, did not have adverse effects on the retina as determined by histopathology, and 8 weeks after transplantation control and oc/oc mice retained their vision. CONCLUSION: Low-dose busulphan conditioning and neonatal SCT leads to prolonged survival of oc/oc mice, reverses osteopetrosis and prevents blindness even at low engraftment levels.
AB - OBJECTIVE: Infantile malignant osteopetrosis is a fatal disease caused by lack of functional osteoclasts. In most of patients, TCIRG1, encoding a subunit of a proton pump essential for bone resorption, is mutated. Osteopetrosis leads to bone marrow failure and blindness due to optic nerve compression. Oc/oc mice have a deletion in Tcirg1 and die around 3 to 4 weeks, but can be rescued by neonatal stem cell transplantation (SCT) after irradiation conditioning. However, as irradiation of neonatal mice results in retinal degeneration, we wanted to investigate whether conditioning with busulphan prior to SCT can lead to preservation of vision and reversal of osteopetrosis in the oc/oc mouse model. MATERIALS AND METHODS: Pregnant dams were conditioned with busulphan and their litters transplanted with 1 x 10(6) normal lineage-depleted bone marrow cells intravenously or intraperitoneally. Mice were followed in terms of survival and engraftment level, as well as with peripheral blood lineage analysis, bone and eye histopathology and a visual-tracking drum test to assess vision. RESULTS: Busulphan at 15 mg/kg was toxic to oc/oc mice. However, six of seven oc/oc mice conditioned with busulphan 7.5 mg/kg survived past the normal lifespan with 10% engraftment, correction of the skeletal phenotype, and normalization of peripheral blood lineages. Busulphan, in contrast to irradiation, did not have adverse effects on the retina as determined by histopathology, and 8 weeks after transplantation control and oc/oc mice retained their vision. CONCLUSION: Low-dose busulphan conditioning and neonatal SCT leads to prolonged survival of oc/oc mice, reverses osteopetrosis and prevents blindness even at low engraftment levels.
U2 - 10.1016/j.exphem.2008.10.010
DO - 10.1016/j.exphem.2008.10.010
M3 - Article
C2 - 19100677
SN - 1873-2399
VL - 37
SP - 302
EP - 308
JO - Experimental Hematology
JF - Experimental Hematology
ER -