Machine Learning based Approach for the Prediction of Surface Integrity in Machining

V. Kryzhanivskyy, R. M'Saoubi, M. Bhallamudi, M. Cekal

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

This paper presents a two-stage procedure to create a surface integrity predictor. The first stage includes data clustering, which allows to evaluate the achievable surface quality. The second stage consists in training the model to predict which cluster the machined surface will belong to. To demonstrate the applicability, an experimental plan for machining of Inconel 718 in milling was developed. The validation through confusion matrix showed that the accuracy of prediction ranged from 64.7% to 84.9% for different test and train sets. Prospect of the research is to expand the set of monitored machining parameters and controlled surface integrity parameters.

Originalspråkengelska
Titel på värdpublikationProcedia CIRP
Sidor537-542
Antal sidor6
Volym108
UtgåvaC
DOI
StatusPublished - 2022
Evenemang6th CIRP Conference on Surface Integrity, CSI 2022 - Lyon, Frankrike
Varaktighet: 2022 juni 82022 juni 10

Publikationsserier

NamnProcedia CIRP
FörlagElsevier
ISSN (tryckt)2212-8271

Konferens

Konferens6th CIRP Conference on Surface Integrity, CSI 2022
Land/TerritoriumFrankrike
OrtLyon
Period2022/06/082022/06/10

Ämnesklassifikation (UKÄ)

  • Annan fysik

Fingeravtryck

Utforska forskningsämnen för ”Machine Learning based Approach for the Prediction of Surface Integrity in Machining”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här