TY - JOUR
T1 - Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract
AU - Hang, Long
AU - Haraoka, Masashi
AU - Agace, William
AU - Leffler, Hakon
AU - Burdick, Marie
AU - Strieter, Robert
AU - Svanborg, Catharina
PY - 1999
Y1 - 1999
N2 - IL-8 is a major human neutrophil chemoattractant at mucosal infection sites. This study examined the C-X-C chemokine response to mucosal infection, and, specifically, the role of macrophage inflammatory protein (MIP)-2, one of the mouse IL-8 equivalents, for neutrophil-epithelial interactions. Following intravesical Escherichia coli infection, several C-X-C chemokines were secreted into the urine, but only MIP-2 concentrations correlated to neutrophil numbers. Tissue quantitation demonstrated that kidney MIP-2 production was triggered by infection, and immunohistochemistry identified the kidney epithelium as a main source of MIP-2. Treatment with anti-MIP-2 Ab reduced the urine neutrophil numbers, but the mice had normal tissue neutrophil levels. By immunohistochemistry, the neutrophils were found in aggregates under the pelvic epithelium, but in control mice the neutrophils crossed the urothelium into the urine. The results demonstrate that different chemokines direct neutrophil migration from the bloodstream to the lamina propria and across the epithelium and that MIP-2 serves the latter function. These findings suggest that neutrophils cross epithelial cell barriers in a highly regulated manner in response to chemokines elaborated at this site. This is yet another mechanism that defines the mucosal compartment and differentiates the local from the systemic host response.
AB - IL-8 is a major human neutrophil chemoattractant at mucosal infection sites. This study examined the C-X-C chemokine response to mucosal infection, and, specifically, the role of macrophage inflammatory protein (MIP)-2, one of the mouse IL-8 equivalents, for neutrophil-epithelial interactions. Following intravesical Escherichia coli infection, several C-X-C chemokines were secreted into the urine, but only MIP-2 concentrations correlated to neutrophil numbers. Tissue quantitation demonstrated that kidney MIP-2 production was triggered by infection, and immunohistochemistry identified the kidney epithelium as a main source of MIP-2. Treatment with anti-MIP-2 Ab reduced the urine neutrophil numbers, but the mice had normal tissue neutrophil levels. By immunohistochemistry, the neutrophils were found in aggregates under the pelvic epithelium, but in control mice the neutrophils crossed the urothelium into the urine. The results demonstrate that different chemokines direct neutrophil migration from the bloodstream to the lamina propria and across the epithelium and that MIP-2 serves the latter function. These findings suggest that neutrophils cross epithelial cell barriers in a highly regulated manner in response to chemokines elaborated at this site. This is yet another mechanism that defines the mucosal compartment and differentiates the local from the systemic host response.
M3 - Article
SN - 1550-6606
VL - 162
SP - 3037
EP - 3044
JO - Journal of Immunology
JF - Journal of Immunology
IS - 5
ER -