TY - JOUR
T1 - Mechanisms of inhibition of lipolysis by insulin, vanadate and peroxovanadate in rat adipocytes
AU - Castan, Isabelle
AU - Wijkander, Jonny
AU - Manganiello, V
AU - Degerman, Eva
PY - 1999
Y1 - 1999
N2 - Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.
AB - Vanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.01 mM) inhibited lipolysis induced by 0.01-1 microM isoprenaline, vanadate being more and pV less efficient than insulin (1 nM). A loss of anti-lipolytic effect of pV was observed by increasing the concentration of isoprenaline and/or pV. pV induced tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 to a greater extent than insulin, whereas vanadate affected these components little if at all. In addition, only a higher concentration (0.1 mM) of pV induced the tyrosine phosphorylation of p85, the 85 kDa regulatory subunit of phosphoinositide 3-kinase (PI-3K). Vanadate activated PI-3K-independent (in the presence of 10 nM isoprenaline) and PI-3K-dependent (in the presence of 100 nM isoprenaline) anti-lipolytic pathways, both of which were found to be independent of phosphodiesterase type 3B (PDE3B). pV (0.01 mM), like insulin, activated PI-3K- and PDE3B-dependent pathways. However, the anti-lipolytic pathway of 0.1 mM pV did not seem to require insulin receptor substrate-1-associated PI-3K and was found to be partly independent of PDE3B. Vanadate and pV (only at 0.01 mM), like insulin, decreased the isoprenaline-induced activation of cAMP-dependent protein kinase. Overall, these results underline the complexity and the diversity in the mechanisms that regulate lipolysis.
KW - diabetes
KW - insulin receptor substrate-1
KW - phosphodiesterase type 3B
KW - phosphoinositide 3-kinase
KW - cAMP-dependent protein kinase
M3 - Article
SN - 0264-6021
VL - 339
SP - 281
EP - 289
JO - Biochemical Journal
JF - Biochemical Journal
ER -