TY - JOUR
T1 - Metataxonomic analysis of halophilic archaea community in two geothermal oases in the southern Tunisian Sahara
AU - Najjari, Afef
AU - Elmnasri , Khaled
AU - Cherif, Hanene
AU - Burleigh, Stephen
AU - Guesmi , Amel
AU - Mahjoubi, Mouna
AU - Linares-Pastén, Javier A.
AU - Cherif, Ameur
AU - Ouzari, Hadda-Imene
PY - 2025
Y1 - 2025
N2 - This study assesses halophilic archaea's phylogenetic diversity in southern Tunisia's geothermal water. In the arid southern regions, limited surface freshwater resources make geothermal waters a vital source for oases and greenhouse irrigation. Three samples, including water, sediment, and halite-soil crust, were collected downstream of two geothermal springs of the Ksar Ghilane (KGH) and Zaouet Al Aness (ZAN) oases, Tunisia. The samples were subjected to 16S rRNA gene sequencing using the Illumina Miseq sequencing approach. Several haloarchaea were identified in the geothermal springs. The average taxonomic composition revealed that 20 out of 33 genera were shared between the two geothermal sources, with uneven distribution, where the Halogranum genus was the most represented genus with an abundance of 18.9% and 11.58% for ZAW and KGH, respectively. Several unique site-specific genera were observed: Halonotius, Halopelagius, Natronorubrum, and Haloarcula in ZAN, and Haloprofundus, Halomarina, Halovivax, Haloplanus, Natrinema, Halobium, Natronoarchaeum, and Haloterrigena in the KGH pool. Most genus members are typically found in low-salinity ecosystems. These findings suggest that haloarchaea can disperse downstream from geothermal sources and may survive temperature and chemical fluctuations in the runoff.
AB - This study assesses halophilic archaea's phylogenetic diversity in southern Tunisia's geothermal water. In the arid southern regions, limited surface freshwater resources make geothermal waters a vital source for oases and greenhouse irrigation. Three samples, including water, sediment, and halite-soil crust, were collected downstream of two geothermal springs of the Ksar Ghilane (KGH) and Zaouet Al Aness (ZAN) oases, Tunisia. The samples were subjected to 16S rRNA gene sequencing using the Illumina Miseq sequencing approach. Several haloarchaea were identified in the geothermal springs. The average taxonomic composition revealed that 20 out of 33 genera were shared between the two geothermal sources, with uneven distribution, where the Halogranum genus was the most represented genus with an abundance of 18.9% and 11.58% for ZAW and KGH, respectively. Several unique site-specific genera were observed: Halonotius, Halopelagius, Natronorubrum, and Haloarcula in ZAN, and Haloprofundus, Halomarina, Halovivax, Haloplanus, Natrinema, Halobium, Natronoarchaeum, and Haloterrigena in the KGH pool. Most genus members are typically found in low-salinity ecosystems. These findings suggest that haloarchaea can disperse downstream from geothermal sources and may survive temperature and chemical fluctuations in the runoff.
KW - geothermal springs
KW - haloarchaea
KW - Halogranum
KW - metataxonomic
KW - oases
U2 - 10.1093/femsle/fnae106
DO - 10.1093/femsle/fnae106
M3 - Article
C2 - 39657077
SN - 1574-6968
VL - 372
JO - FEMS Microbiology Letters
JF - FEMS Microbiology Letters
M1 - fnae106
ER -